直流电子负载中MOS管是什么?工作原理是怎样的
直流电子负载是控制功率MOS管的导通深度,靠功率管的耗散功率(发热)消耗电能的设备,它的基本工作方式有恒压、恒流、恒阻、恒功率这几种。下文讲述直流电子负载恒流模式原理。在恒流模式下,不管输入电压是否改变,电子负载消耗一个恒定的电流。
一、功率MOS管的工作状态
电子负载是利MOS的线性区,当作可变电阻来用的,把电消耗掉。MOS管在恒流区(放大状态)内,Vgs一定时Id不随Vds的变化而变化,可实现MOS管输出回路电流恒定。只要改变Vgs的值,即可在改变输出回路中恒定的电流的大小。
二、用运放控制Vgs
采样电阻Rs、运放构成一比较放大电路,MOS管输出回路的电流经RS转换成电压后,反馈到运放反向端实现控制vgs,从而MOS管输出回路的电流。当给定一个电压VREF时,如果Rs上的电压小于 VREF,也就是 运放的-IN小于+IN,运放加大输出,使MOS导通程度加深,使MOS管输出回路电流加大。如果 Rs 上的电压大于 VREF时,-IN大于+IN,运放减小输出,也就MOS管输出回路电流,这样电路最终维持在恒定的给值上,也就实现了恒流工作。
下面推导Id的表达式:
Un=Is*Rs
Up=Un=Uref
Uref=Is*Rs
Is=Id-Ig
对于MOS管,其输入电阻很大,Ig近似为0,则:
Id=Is=Uref/Rs
由此可知只要Uref不变,Id也不变,即可实现恒流输出。如果改变 UREF就可改变恒流值,UREF可用电位器调节输入或用DAC芯片由MCU控制输入,采用电位器可手动调节输出电流。若采用 DAC输入即可实现数控恒流电子负载。
三、实用的运放恒流电子负载
基本原理:MOS和电阻Rs组成负反馈电路,MOS管工作在恒流区,运放同相端调节设定恒流值,MOS管的电流在电阻Rs上产生压降,反馈到运放反向端实现控制输出电流。R1、U2构成一2.5V基准电压源,R2、Rp对这2.5V电压分压得到一参考电压送入运放同相端,MOS管输出回路的电流Is经Rs转换成电压后,反馈到运放反向端实现控制vgs,从而控制MOS管输出回路的电流Is的稳定。电容C1主要作用有2个,一方面是消杂波,另一方面也是对运放输出的梯波进行补偿,使得电压变化速度减缓,尽量减少mosfet的G极电压高频变化引发振荡的可能。
下面给出各种参数的表达式:
Uref=2.5*(Rp’/(R2+Rp))
其中Rp’为Rp抽头对地的电阻
Is=Uref/RS=2.5*(Rp’/(R2+Rp))/Rs
当Rp抽头在最上端时,Uref、Is有最大值
Urefmax=2.5*(Rp/(R2+Rp))
Ismax=Urefmax/RS=2.5*(Rp/(R2+Rp))/Rs
如果已知最大电流Is可用
Rs=Urefmax/RS=2.5*(Rp/(R2+Rp))/Ismax
按图中元件参数计算,可以得到
Urefmax=2.5*(4.7/(27+4.7))=0.37v
Ismax=Urefmax/RS=2.5*( Rp/(R2+Rp))/Rs = 2.5*( 4.7/(27+4.7))/0.1=3.7A
即图中电路最大恒流值约为3.7A。
四、多MOS管并联
电子负载mos管是靠功率管的耗散功率(发热)消耗电能的,流经MOS管电流过大会导致耗散功率过大,容易烧坏MOS管。为此可以采用多管并联的方式来均分电流。由于元件具有离散性和差异性,流经每个MOS管的电流实际并不一致,可以在电路中加入均流电阻,图中R4、R5、R6、R7为均流电阻。注意,在这种电路中,按上文式子计算出来Rs是总电阻,Id是总电流。
其实上图是有缺陷的:一是不能很好解决每个MOS电流的不一致的问题,二是运放的输出能力有限,不能驱动多个MOS管。每个MOS管独立用一套运放驱动即可解决。
在这一电路中,按上文式子计算出来Rs是总电阻,Id是总电流。